6790 2021-02-13 2021-03-21
前言:为什么用redis?请针对此问题展开讨论。
一、概述
这次我们将重点关注如下几个点,希望通过对这些问题的回答,来解决已存在的一些诱惑
- 为什么要用redis而不用map做缓存?
- redis为什么快,或者说 为什么比memcached等同类产品快?
- redis如何处理过期键?
- redis既然是基于内存的,那么redis如何持久化?
- redis如何进行数据同步,主从同步如何实现,mysql是如何实现的?
二、why not map
为什么要用redis而不用map做缓存?
1、使用场景
缓存分为本地缓存和分布式缓存。
以Java为例,使用自带的map或guava/ehcache/caffeine提供的缓存功能实现的是本地缓存,最主要的特点是轻量以及快速,声明周期随着jvm的销毁而结束,并且在大多数情况下,每个实例各自保存一份缓存,其缓存不具有一致性。
使用redis或memcached之类的分布式缓存,在多实例的情况下,各实例共用一份缓存数据,缓存具有一致性。缺点是需要保存redis或memcache服务的高可用,整个程序架构上较为复杂。
2、是否专业
map不是专业做缓存的,而redis是专业做缓存的,具体表现如下
- map使用的是Java堆,受Java堆的内存限制,容易OOM,且面临过期、持久化等问题
- redis提供丰富的数据结构使用
- 天生的分布式缓存服务器
三、why so fast
1、精心设计的数据结构
展开讨论的话,需要深入到源代码层面,因此,点到为止,如下所示
1、动态字符串
动态字符串(simple dynamic string),SDS与C的字符串比较如下
-
sdshdr数据结构中用len属性记录了字符串的长度。那么获取字符串的长度时,时间复杂度只需要O(1)。
-
SDS不会发生溢出的问题,如果修改SDS时,空间不足。先会扩展空间,再进行修改!(内部实现了动态扩展机制)。
-
SDS可以减少内存分配的次数(空间预分配机制)。在扩展空间时,除了分配修改时所必要的空间,还会分配额外的空闲空间(free 属性)。
-
SDS是二进制安全的,所有SDS API都会以处理二进制的方式来处理SDS存放在buf数组里的数据。
2、字典
关键点如下
- 与一个定值进行计算,HashMap与数组大小有关
- 两个数组,一个存储实际数据,一个是为扩容而准备的数组,与HashMap不同的可以边扩容边使用
- 跳跃表
2、基于内存
纯内存操作。
3、单线程工作
使用单线程,无上下文切换成本。虽然性能比不上多线程,但单线程解决了数据存储的顽疾--数据并发安全。
4、IO多路复用
非阻塞的IO多路复用机制。
四、how to deal expired key
1、内存空间是有限的
内存不比硬盘,内存空间是有限的。所以我们会干掉不常用的数据,保留常用的数据。这就需要我们设置一下键的过期(生存)时间了。
- 设置键的生存时间可以通过
EXPIRE
或者PEXPIRE
命令。 - 设置键的过期时间可以通过
EXPIREAT
或者PEXPIREAT
命令。
其实EXPIRE
、PEXPIRE
、EXPIREAT
这三个命令都是通过PEXPIREAT
命令来实现的。
既然有设置过期(生存)时间的命令,那肯定也有移除过期时间,查看剩余生存时间的命令了:
- PERSIST(移除过期时间)
- TTL(Time To Live)返回剩余生存时间,以秒为单位
- PTTL以毫秒为单位返回键的剩余生存时间
注意:从服务器载入时,不会检查是否过期,数据都会载入。
2、过期删除策略
删除策略可分为三种
- 定时删除(对内存友好,对CPU不友好):到时间点上就把所有过期的键删除了。
- 惰性删除(对CPU极度友好,对内存极度不友好):每次从键空间取键的时候,判断一下该键是否过期了,如果过期了就删除。
- 定期删除(折中):每隔一段时间去删除过期键,限制删除的执行时长和频率。
Redis采用的是惰性删除 + 定期删除两种策略,所以说,在Redis里边如果过期键到了过期的时间了,未必被立马删除的!
3、内存淘汰机制
如果定期删除漏掉了很多过期key,也没及时去查(没走惰性删除),大量过期key堆积在内存里,导致redis内存块耗尽了,咋整?
我们可以设置内存最大使用量,当内存使用量超出时,会施行数据淘汰策略。
Redis的内存淘汰机制有以下几种:
-
volatile-lru -> Evict using approximated LRU among the keys with an expire set(least recently used,在过期键中找出最近最少使用的键进行淘汰)
-
allkeys-lru -> Evict any key using approximated LRU
-
volatile-lfu -> Evict using approximated LFU among the keys with an expire set(least frequently used,在过期键中找出最少使用的键进行淘汰)
-
allkeys-lfu -> Evict any key using approximated LFU
-
volatile-random -> Remove a random key among the ones with an expire set.
-
allkeys-random -> Remove a random key, any key
-
volatile-ttl -> Remove the key with the nearest expire time (minor TTL)
-
noeviction -> Don't evict anything, just return an error on write operations
4、官方配置说明*
下面是redis关于内存管理的配置说明,由此可知,默认的内存淘汰策略是不淘汰(maxmemory-policy noeviction),抛错。
############################## MEMORY MANAGEMENT ################################
# Set a memory usage limit to the specified amount of bytes.
# When the memory limit is reached Redis will try to remove keys
# according to the eviction policy selected (see maxmemory-policy).
#
# If Redis can't remove keys according to the policy, or if the policy is
# set to 'noeviction', Redis will start to reply with errors to commands
# that would use more memory, like SET, LPUSH, and so on, and will continue
# to reply to read-only commands like GET.
#
# This option is usually useful when using Redis as an LRU or LFU cache, or to
# set a hard memory limit for an instance (using the 'noeviction' policy).
#
# WARNING: If you have replicas attached to an instance with maxmemory on,
# the size of the output buffers needed to feed the replicas are subtracted
# from the used memory count, so that network problems / resyncs will
# not trigger a loop where keys are evicted, and in turn the output
# buffer of replicas is full with DELs of keys evicted triggering the deletion
# of more keys, and so forth until the database is completely emptied.
#
# In short... if you have replicas attached it is suggested that you set a lower
# limit for maxmemory so that there is some free RAM on the system for replica
# output buffers (but this is not needed if the policy is 'noeviction').
#
# maxmemory <bytes>
### 介绍了有哪几种淘汰算法
# MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
# is reached. You can select among five behaviors:
#
# volatile-lru -> Evict using approximated LRU among the keys with an expire set.
# allkeys-lru -> Evict any key using approximated LRU.
# volatile-lfu -> Evict using approximated LFU among the keys with an expire set.
# allkeys-lfu -> Evict any key using approximated LFU.
# volatile-random -> Remove a random key among the ones with an expire set.
# allkeys-random -> Remove a random key, any key.
# volatile-ttl -> Remove the key with the nearest expire time (minor TTL)
# noeviction -> Don't evict anything, just return an error on write operations.
#
# LRU means Least Recently Used
# LFU means Least Frequently Used
#
# Both LRU, LFU and volatile-ttl are implemented using approximated
# randomized algorithms.
#
# Note: with any of the above policies, Redis will return an error on write
# operations, when there are no suitable keys for eviction.
#
# At the date of writing these commands are: set setnx setex append
# incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
# sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
# zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
# getset mset msetnx exec sort
#
# The default is:
#
# maxmemory-policy noeviction
### 对于lru、lfu、ttl的淘汰算法并不是精确的,而是近似的,默认从随机选的5个键进行比较,并解释了为什么不是3个(不准确)、不是10个(耗cpu)
# LRU, LFU and minimal TTL algorithms are not precise algorithms but approximated
# algorithms (in order to save memory), so you can tune it for speed or
# accuracy. For default Redis will check five keys and pick the one that was
# used less recently, you can change the sample size using the following
# configuration directive.
#
# The default of 5 produces good enough results. 10 Approximates very closely
# true LRU but costs more CPU. 3 is faster but not very accurate.
#
# maxmemory-samples 5
### 从redis5开始,副本默认会忽略最大内存限制
# Starting from Redis 5, by default a replica will ignore its maxmemory setting
# (unless it is promoted to master after a failover or manually). It means
# that the eviction of keys will be just handled by the master, sending the
# DEL commands to the replica as keys evict in the master side.
#
# This behavior ensures that masters and replicas stay consistent, and is usually
# what you want, however if your replica is writable, or you want the replica to have
# a different memory setting, and you are sure all the writes performed to the
# replica are idempotent, then you may change this default (but be sure to understand
# what you are doing).
#
# Note that since the replica by default does not evict, it may end using more
# memory than the one set via maxmemory (there are certain buffers that may
# be larger on the replica, or data structures may sometimes take more memory and so
# forth). So make sure you monitor your replicas and make sure they have enough
# memory to never hit a real out-of-memory condition before the master hits
# the configured maxmemory setting.
#
# replica-ignore-maxmemory yes
五、how to persistence
Redis是基于内存的,如果不想办法将数据保存在硬盘上,一旦Redis重启(退出/故障),内存的数据将会全部丢失。
我们肯定不想Redis里头的数据由于某些故障全部丢失(导致所有请求都走MySQL),即便发生了故障也希望可以将Redis原有的数据恢复过来,这就是持久化的作用。
Redis提供了两种不同的持久化方法来讲数据存储到硬盘里边:
- RDB(Redis Database),将某一时刻的所有数据保存到一个RDB文件中。
- AOF(Append-Only-File),当Redis服务器执行写命令的时候,将执行的写命令保存到AOF文件中
1、RDB
RDB(Redis Database)持久化可以手动执行,也可以根据服务器配置定期执行。RDB持久化所生成的RDB文件是一个经过压缩的二进制文件,Redis可以通过这个文件还原数据库的数据。
1)主动生成
有两个命令可以生成RDB文件:
SAVE
会阻塞Redis服务器进程,服务器不能接收任何请求,直到RDB文件创建完毕为止。BGSAVE
创建出一个子进程,由子进程来负责创建RDB文件,服务器进程可以继续接收请求。
Redis服务器在启动的时候,如果发现有RDB文件,就会自动载入RDB文件(不需要人工干预),载入RDB文件期间,会处于阻塞状态,直到载入工作完成。
2)自动生成
除了手动调用SAVE
或者BGSAVE
命令生成RDB文件之外,我们可以使用配置的方式来定期执行:
在默认的配置下,如果以下的条件被触发,就会执行BGSAVE
命令
save 900 1 #在900秒(15分钟)之后,至少有1个key发生变化,
save 300 10 #在300秒(5分钟)之后,至少有10个key发生变化
save 60 10000 #在60秒(1分钟)之后,至少有10000个key发生变化
总结:通过手动调用SAVE
或者BGSAVE
命令或者配置条件触发,将数据库某一时刻的数据快照,生成RDB文件实现持久化。
2、RDB官方配置说明*
################################ SNAPSHOTTING ################################
### 介绍了rdb触发的条件,生成save point,如果不满足就不会触发rdb
### 注意,由于触发的条件的关系,内存数据不会实时保持到硬盘,可能会导致数据的丢失
#
# Save the DB on disk:
#
# save <seconds> <changes>
#
# Will save the DB if both the given number of seconds and the given
# number of write operations against the DB occurred.
#
# In the example below the behaviour will be to save:
# after 900 sec (15 min) if at least 1 key changed
# after 300 sec (5 min) if at least 10 keys changed
# after 60 sec if at least 10000 keys changed
#
# Note: you can disable saving completely by commenting out all "save" lines.
#
# It is also possible to remove all the previously configured save
# points by adding a save directive with a single empty string argument
# like in the following example:
#
# save ""
save 900 1
save 300 10
save 60 10000
# By default Redis will stop accepting writes if RDB snapshots are enabled
# (at least one save point) and the latest background save failed.
# This will make the user aware (in a hard way) that data is not persisting
# on disk properly, otherwise chances are that no one will notice and some
# disaster will happen.
#
# If the background saving process will start working again Redis will
# automatically allow writes again.
#
# However if you have setup your proper monitoring of the Redis server
# and persistence, you may want to disable this feature so that Redis will
# continue to work as usual even if there are problems with disk,
# permissions, and so forth.
stop-writes-on-bgsave-error yes
# Compress string objects using LZF when dump .rdb databases?
# For default that's set to 'yes' as it's almost always a win.
# If you want to save some CPU in the saving child set it to 'no' but
# the dataset will likely be bigger if you have compressible values or keys.
rdbcompression yes
# Since version 5 of RDB a CRC64 checksum is placed at the end of the file.
# This makes the format more resistant to corruption but there is a performance
# hit to pay (around 10%) when saving and loading RDB files, so you can disable it
# for maximum performances.
#
# RDB files created with checksum disabled have a checksum of zero that will
# tell the loading code to skip the check.
rdbchecksum yes
### 一些关于rdb文件名、文件保存目录的设置
# The filename where to dump the DB
dbfilename dump.rdb
# The working directory.
#
# The DB will be written inside this directory, with the filename specified
# above using the 'dbfilename' configuration directive.
#
# The Append Only File will also be created inside this directory.
#
# Note that you must specify a directory here, not a file name.
dir /var/lib/redis
3、AOF
AOF(Append-Only-File)通过记录每次对服务器写的操作,当服务器重启的时候会重新执行这些命令来恢复原始的数据,AOF 命令以 Redis 特定协议追加每次写操作到文件末尾。
1、命令追加
AOF持久化功能的实现可以分为3个步骤:
- 命令追加:命令写入aof_buf缓冲区
- 文件写入:调用flushAppendOnlyFile函数,考虑是否要将aof_buf缓冲区写入AOF文件中
- 文件同步:考虑是否将内存缓冲区的数据真正写入到硬盘
其中,flushAppendOnlyFile函数的行为由服务器配置的appendfsyn选项来决定的:
appendfsync always # 每次有数据修改发生时都会写入AOF文件。
appendfsync everysec # 每秒钟同步一次,该策略为AOF的默认策略。
appendfsync no # 从不同步,有linux宿主机确定调用时机。高效但是数据不会被持久化。
2、AOF重写
参考链接:https://blog.csdn.net/yzj5208/article/details/82083549
从前面我们知道,redis会记录每条写命令到aof文件末尾,但长此以往,文件会越来越大,且实际上我们可以通过命令合并(忽略原aof文件命令内容,而以最终数据库实际数据为准),对原文件进行压缩,重写生成一个新的文件。这就是aof重写的大致原理。
要值得说明的是:AOF重写不需要对现有的AOF文件进行任何的读取、分析。AOF重写是通过读取服务器当前数据库的数据来实现的。
可以由用户手动触发,也可以由服务器自动触发。
3、AOF后台重写
aof_rewrite
函数(后台重写函数)可以创建新的AOF文件,但是这个函数会进行大量的写入操作,所以调用这个函数的线程将被长时间的阻塞,因为Redis服务器使用单线程来处理命令请求;所以如果直接是服务器进程调用AOF_REWRITE
函数的话,那么重写AOF期间,服务器将无法处理客户端发送来的命令请求;
Redis不希望AOF重写会造成服务器无法处理请求,所以Redis决定将AOF重写程序放到子进程(后台)里执行。这样处理的最大好处是:
- 子进程进行AOF重写期间,主进程可以继续处理命令请求;
- 子进程带有主进程的数据副本,使用子进程而不是线程,可以避免在锁的情况下,保证数据的安全性。
1)使用子进程进行AOF重写的问题
子进程在进行AOF重写期间,服务器进程还要继续处理命令请求,而新的命令可能对现有的数据进行修改,这会让当前数据库的数据和重写后的AOF文件中的数据不一致。
2)如何修正
- 为了解决这种数据不一致的问题,Redis增加了一个AOF重写缓存,这个缓存在fork出子进程之后开始启用,Redis服务器主进程在执行完写命令之后,会同时将这个写命令追加到AOF缓冲区和AOF重写缓冲区
- 即子进程在执行AOF重写时,主进程需要执行以下三个工作:
- 执行client发来的命令请求
- 将写命令追加到现有的AOF文件中
- 将写命令追加到AOF重写缓存中
4、AOF官方配置说明*
############################## APPEND ONLY MODE ###############################
### 介绍了aof为什么存在,可与rdb同时存在,如果都开启时,redis默认恢复数据先加载aof文件
### 由配置文件可知,默认是关闭aof的
# By default Redis asynchronously dumps the dataset on disk. This mode is
# good enough in many applications, but an issue with the Redis process or
# a power outage may result into a few minutes of writes lost (depending on
# the configured save points).
#
# The Append Only File is an alternative persistence mode that provides
# much better durability. For instance using the default data fsync policy
# (see later in the config file) Redis can lose just one second of writes in a
# dramatic event like a server power outage, or a single write if something
# wrong with the Redis process itself happens, but the operating system is
# still running correctly.
#
# AOF and RDB persistence can be enabled at the same time without problems.
# If the AOF is enabled on startup Redis will load the AOF, that is the file
# with the better durability guarantees.
#
# Please check http://redis.io/topics/persistence for more information.
appendonly no
# The name of the append only file (default: "appendonly.aof")
appendfilename "appendonly.aof"
### 决定刷盘的频率,默认为每秒刷一次,这意味着最多丢失一秒的写数据
# The fsync() call tells the Operating System to actually write data on disk
# instead of waiting for more data in the output buffer. Some OS will really flush
# data on disk, some other OS will just try to do it ASAP.
#
# Redis supports three different modes:
#
# no: don't fsync, just let the OS flush the data when it wants. Faster.
# always: fsync after every write to the append only log. Slow, Safest.
# everysec: fsync only one time every second. Compromise.
#
# The default is "everysec", as that's usually the right compromise between
# speed and data safety. It's up to you to understand if you can relax this to
# "no" that will let the operating system flush the output buffer when
# it wants, for better performances (but if you can live with the idea of
# some data loss consider the default persistence mode that's snapshotting),
# or on the contrary, use "always" that's very slow but a bit safer than
# everysec.
#
# More details please check the following article:
# http://antirez.com/post/redis-persistence-demystified.html
#
# If unsure, use "everysec".
# appendfsync always
appendfsync everysec
# appendfsync no
# When the AOF fsync policy is set to always or everysec, and a background
# saving process (a background save or AOF log background rewriting) is
# performing a lot of I/O against the disk, in some Linux configurations
# Redis may block too long on the fsync() call. Note that there is no fix for
# this currently, as even performing fsync in a different thread will block
# our synchronous write(2) call.
#
# In order to mitigate this problem it's possible to use the following option
# that will prevent fsync() from being called in the main process while a
# BGSAVE or BGREWRITEAOF is in progress.
#
# This means that while another child is saving, the durability of Redis is
# the same as "appendfsync none". In practical terms, this means that it is
# possible to lose up to 30 seconds of log in the worst scenario (with the
# default Linux settings).
#
# If you have latency problems turn this to "yes". Otherwise leave it as
# "no" that is the safest pick from the point of view of durability.
no-appendfsync-on-rewrite no
### 设置aof触发重写的条件
# Automatic rewrite of the append only file.
# Redis is able to automatically rewrite the log file implicitly calling
# BGREWRITEAOF when the AOF log size grows by the specified percentage.
#
# This is how it works: Redis remembers the size of the AOF file after the
# latest rewrite (if no rewrite has happened since the restart, the size of
# the AOF at startup is used).
#
# This base size is compared to the current size. If the current size is
# bigger than the specified percentage, the rewrite is triggered. Also
# you need to specify a minimal size for the AOF file to be rewritten, this
# is useful to avoid rewriting the AOF file even if the percentage increase
# is reached but it is still pretty small.
#
# Specify a percentage of zero in order to disable the automatic AOF
# rewrite feature.
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb
### 一些对aof加载持久化数据的优化策略
# An AOF file may be found to be truncated at the end during the Redis
# startup process, when the AOF data gets loaded back into memory.
# This may happen when the system where Redis is running
# crashes, especially when an ext4 filesystem is mounted without the
# data=ordered option (however this can't happen when Redis itself
# crashes or aborts but the operating system still works correctly).
#
# Redis can either exit with an error when this happens, or load as much
# data as possible (the default now) and start if the AOF file is found
# to be truncated at the end. The following option controls this behavior.
#
# If aof-load-truncated is set to yes, a truncated AOF file is loaded and
# the Redis server starts emitting a log to inform the user of the event.
# Otherwise if the option is set to no, the server aborts with an error
# and refuses to start. When the option is set to no, the user requires
# to fix the AOF file using the "redis-check-aof" utility before to restart
# the server.
#
# Note that if the AOF file will be found to be corrupted in the middle
# the server will still exit with an error. This option only applies when
# Redis will try to read more data from the AOF file but not enough bytes
# will be found.
aof-load-truncated yes
# When rewriting the AOF file, Redis is able to use an RDB preamble in the
# AOF file for faster rewrites and recoveries. When this option is turned
# on the rewritten AOF file is composed of two different stanzas:
#
# [RDB file][AOF tail]
#
# When loading Redis recognizes that the AOF file starts with the "REDIS"
# string and loads the prefixed RDB file, and continues loading the AOF
# tail.
aof-use-rdb-preamble yes
5、对过期的键的处理
有个大致印象即可。
1)RDB
RDB持久化对过期键的策略:
- 执行
SAVE
或者BGSAVE
命令创建出的RDB文件,程序会对数据库中的过期键检查,已过期的键不会保存在RDB文件中。 - 载入RDB文件时,程序同样会对RDB文件中的键进行检查,过期的键会被忽略。
- 主从服务器:RDB文件无论是生成或载入,都会对过期键进行检查;生成时,过期键不写入;载入时,过期键会忽略。而从服务器载入时,不会检查是否过期,数据都会载入。
2)AOF
AOF持久化对过期键的策略:
- 如果数据库的键已过期,但还没被惰性/定期删除,AOF文件不会因为这个过期键产生任何影响(也就说会保留),当过期的键被删除了以后,会追加一条DEL命令来显示记录该键被删除了。
- 重写AOF文件时,程序会对AOF文件中的键进行检查,过期的键会被忽略。
- 主从服务器:由主服务器进行删除过期键,并显式向从服务器发送DEL命令;从服务器自身不具备删除过期键值行为。
六、how to sync data
1、主从同步
在主流的主从架构中
- 主服务器负责接收写请求(可以读,但一般只用于写)
- 从服务器负责接收读请求
- 从服务器的数据由主服务器复制过去。主从服务器的数据是一致的(可能存在数据延迟)
主从架构的优点:
- 读写分离(主服务器负责写,从服务器负责读)
- 高可用(某一台从服务器挂了,其他从服务器还能继续接收请求,不影响服务)
- 处理更多的并发量(每台从服务器都可以接收读请求,读QPS就上去了)
2、主从数据同步
数据同步功能分为两个操作:
- 同步(sync):将从服务器的数据库状态更新至主服务器的数据库状态。
- 命令传播(command propagate):主服务器的数据库状态被修改,导致主从服务器的数据库状态不一致,让主从服务器的数据库状态重新回到一致状态。
从服务器对主服务器的同步又可以分为以下三种情况:
- 初次同步-完整:从服务器没有复制过任何的主服务器,从主服务器同步全部数据。
- 初次同步-不完整:从服务器没有复制过任何的主服务器,从主服务器同步了部分数据。
- 初次同步完整后,断线同步,进行命令传播:处于命令传播阶段的主从服务器因为网络原因中断了复制,从服务器通过自动重连重新连接主服务器,并继续复制主服务器
1、建立连接
- 从服务器调用slaveof命令,设置主服务的IP地址和端口,尝试建立与主服务器的socket连接
- 发送ping命令检测主服务器的读写能力(发送身份凭据,如果需要)
- 主服务记录从服务的IP地址和端口,成功建立连接
2、完整重同步
下面先来看看完整重同步是怎么实现的:
- 从服务器向主服务器发送PSYNC命令
- 收到PSYNC命令的主服务器执行BGSAVE命令,在后台生成一个RDB文件。并用一个缓冲区来记录从现在开始执行的所有写命令。
- 当主服务器的BGSAVE命令执行完后,将生成的RDB文件发送给从服务器,从服务器接收和载入RBD文件。将自己的数据库状态更新至与主服务器执行BGSAVE命令时的状态。
- 主服务器将所有缓冲区的写命令发送给从服务器,从服务器执行这些写命令,达到数据最终一致性。
3、部分重同步
接下来我们来看看部分重同步,部分重同步可以让我们断线后重连只需要同步缺失的数据(而不是Redis2.8之前的同步全部数据),这是符合逻辑的!
部分重同步功能由以下部分组成:
- 主从服务器的复制偏移量
- 主服务器的复制积压缓冲区
- 服务器运行的ID(run ID)
首先我们来解释一下上面的名词:
复制偏移量:执行复制的双方都会分别维护一个复制偏移量
- 主服务器每次传播N个字节,就将自己的复制偏移量加上N
- 从服务器每次收到主服务器的N个字节,就将自己的复制偏移量加上N
通过对比主从复制的偏移量,就很容易知道主从服务器的数据是否处于一致性的状态!
那断线重连以后,从服务器向主服务器发送PSYNC命令,报告现在的偏移量是36,那么主服务器该对从服务器执行完整重同步还是部分重同步呢??
这就交由复制积压缓冲区来决定。
当主服务器进行命令传播时,不仅仅会将写命令发送给所有的从服务器,还会将写命令入队到复制积压缓冲区里面(这个大小可以调的)。如果复制积压缓冲区存在丢失的偏移量的数据,那就执行部分重同步,否则执行完整重同步。
服务器运行的ID(run ID)实际上就是用来比对ID是否相同。如果不相同,则说明从服务器断线之前复制的主服务器和当前连接的主服务器是两台服务器,这就会进行完整重同步。
4、命令传播
当完成了同步之后,主从服务器就会进入命令传播阶段。这时主服务器只要将自己的写命令发送给从服务器,而从服务器接收并执行主服务器发送过来的写命令,就可以保证主从服务器一直保持数据一致了!
在命令传播阶段,从服务器默认会以每秒一次的频率,向服务器发送命令REPLCONF ACK <replication_offset>
其中replication_offset是从服务器当前的复制偏移量
发送这个命令主要有三个作用:
- 检测主从服务器的网络状态
- 辅助实现min-slaves选项
- 检测命令丢失
3、mysql主从同步
TODO
总访问次数: 270次, 一般般帅 创建于 2021-02-13, 最后更新于 2021-03-21
欢迎关注微信公众号,第一时间掌握最新动态!